{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "j0FI6PdE1YoN" }, "source": [ "# Import Necessary Libs\n", "# (This is the demo code for the toy example: rating.csv. The main purpose of this demo code is to help students understand the KNN-based CF algorithms.)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "id": "qwRX_2RCrWdg" }, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "from sklearn.model_selection import train_test_split" ] }, { "cell_type": "markdown", "metadata": { "id": "UJRU5o4d1iCC" }, "source": [ "## Load Dataset" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "SPlwg9AgrYgp", "outputId": "b8871ff9-6581-44a6-bc48-1b3caaa57ead" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "5 users\n", "4 items\n" ] }, { "data": { "text/html": [ "
\n", " | user_id | \n", "item_id | \n", "rating | \n", "
---|---|---|---|
0 | \n", "0 | \n", "0 | \n", "5 | \n", "
1 | \n", "0 | \n", "1 | \n", "3 | \n", "
2 | \n", "0 | \n", "2 | \n", "5 | \n", "
3 | \n", "0 | \n", "3 | \n", "1 | \n", "
4 | \n", "1 | \n", "0 | \n", "5 | \n", "
5 | \n", "1 | \n", "1 | \n", "4 | \n", "
6 | \n", "1 | \n", "2 | \n", "3 | \n", "
7 | \n", "1 | \n", "3 | \n", "1 | \n", "
8 | \n", "2 | \n", "0 | \n", "4 | \n", "
9 | \n", "2 | \n", "1 | \n", "4 | \n", "
10 | \n", "2 | \n", "2 | \n", "5 | \n", "
11 | \n", "2 | \n", "3 | \n", "1 | \n", "
12 | \n", "3 | \n", "0 | \n", "4 | \n", "
13 | \n", "3 | \n", "2 | \n", "5 | \n", "
14 | \n", "3 | \n", "3 | \n", "5 | \n", "
15 | \n", "3 | \n", "1 | \n", "3 | \n", "
16 | \n", "4 | \n", "0 | \n", "1 | \n", "
17 | \n", "4 | \n", "1 | \n", "2 | \n", "
18 | \n", "4 | \n", "2 | \n", "3 | \n", "
19 | \n", "4 | \n", "3 | \n", "5 | \n", "