{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import matplotlib\n", "import matplotlib.pyplot as plt\n", "matplotlib.rcParams['font.sans-serif'] = ['SimHei'] #或者把\"SimHei\"换为\"KaiTi\"\n", "matplotlib.rcParams['axes.unicode_minus'] = False \n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "program_data = [[\"towers\", 1880, 10152, 18.52, 10144, 100, (10144/10152)*100, 0.0788],\n", " [\"dhrystone\", 4384, 286216, 1.53, 286080, 100, (286080/286216)*100, 0.0475],\n", " [\"vim\", 126712, 3528864, 3.59, 3528518, 100, (3528518/3528864)*100, 0.0098],\n", " [\"bash\", 35548, 2818904, 1.26, 2818690, 100, (2818690/2818904)*100, 0.0076],]\n", "# {\n", "# \"测试程序\" : \"towers\",\n", "# \"原程序体积\" : 10152,\n", "# \"优化后体积\" : 10144,\n", "# },\n", "\n", "data = pd.DataFrame(program_data, columns=[\"测试程序\", \"数据段体积\", \"原程序体积\", \"数据段占比\",\n", " \"优化后体积\", \"原体积比\", \"缩减后体积比\", \"代码缩减效率\"])" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | 测试程序 | \n", "数据段体积 | \n", "原程序体积 | \n", "数据段占比 | \n", "优化后体积 | \n", "原体积比 | \n", "缩减后体积比 | \n", "代码缩减效率 | \n", "
---|---|---|---|---|---|---|---|---|
0 | \n", "towers | \n", "1880 | \n", "10152 | \n", "18.52 | \n", "10144 | \n", "100 | \n", "99.921198 | \n", "0.0788 | \n", "
1 | \n", "dhrystone | \n", "4384 | \n", "286216 | \n", "1.53 | \n", "286080 | \n", "100 | \n", "99.952483 | \n", "0.0475 | \n", "
2 | \n", "vim | \n", "126712 | \n", "3528864 | \n", "3.59 | \n", "3528518 | \n", "100 | \n", "99.990195 | \n", "0.0098 | \n", "
3 | \n", "bash | \n", "35548 | \n", "2818904 | \n", "1.26 | \n", "2818690 | \n", "100 | \n", "99.992408 | \n", "0.0076 | \n", "